Affiliation:
1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, No. 10, Xitucheng Road, Haidian District, Beijing 100876, China
Abstract
Graph convolutional networks (GCNs) have obtained remarkable performance in skeleton-based action recognition. However, previous approaches fail to capture the implicit correlations between joints and handle actions across varying time intervals. To address these problems, we propose an adaptive multi-scale difference graph convolution Network (AMD-GCN), which comprises an adaptive spatial graph convolution module (ASGC) and a multi-scale temporal difference convolution module (MTDC). The first module is capable of acquiring data-dependent and channel-wise graphs that are adaptable to both samples and channels. The second module employs the multi-scale approach to model temporal information across a range of time scales. Additionally, the MTDC incorporates an attention-enhanced module and difference convolution to accentuate significant channels and enhance temporal features, respectively. Finally, we propose a multi-stream framework for integrating diverse skeletal modalities to achieve superior performance. Our AMD-GCN approach was extensively tested and proven to outperform the current state-of-the-art methods on three widely recognized benchmarks: the NTU-RGB+D, NTU-RGB+D 120, and Kinetics Skeleton datasets.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exponential distance transform maps for cell localization;Engineering Applications of Artificial Intelligence;2024-06