Abstract
Drones/unmanned aerial vehicles (UAVs) have recently grown in popularity due to their inexpensive cost and widespread commercial use. The increased use of drones raises the possibility that they may be employed in illicit activities such as drug smuggling and terrorism. Thus, drone monitoring and automated detection are critical for protecting restricted areas or special zones from illicit drone operations. One of the most challenging difficulties in drone detection in surveillance videos is the apparent likeness of drones against varied backdrops. This paper introduces an automated image-based drone-detection system that uses an enhanced deep-learning-based object-detection algorithm known as you only look once (YOLOv5) to defend restricted territories or special zones from unauthorized drone incursions. The transfer learning to pretrain the model is employed for improving performance due to an insufficient number of samples in our dataset. Furthermore, the model can recognize the detected object in the images and mark the object’s bounding box by joining the results across the region. The experiments show outstanding results for the loss value, drone location detection, precision and recall.
Funder
Taif University, Taif, Saudi Arabia
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献