Deep Learning-Based Road Traffic Density Analysis and Monitoring Using Semantic Segmentation

Author:

Whardana Adithya Kusuma,Hadi Rentelinggi Parma

Abstract

Due to factors such as a growing population, more people using private vehicles, and outdated transportation infrastructure, Jakarta, the capital city of Indonesia, suffers from chronic traffic congestion. The environment, citizens' safety, productivity, and quality of life are all negatively impacted by these interruptions. In response to these difficulties, this study proposes a novel method for traffic monitoring. By combining YOLOv5, optical flow, and recurrent neural networks (RNN) with image processing and artificial neural networks, a unified traffic monitoring system can be achieved. We went with YOLOv5 because of how well it identifies various automobiles. The number of vehicles is counted between video frames using Optical Flow, and then the traffic density is classified using RNN. With an accuracy of 87% following testing, RNN was clearly a winner when it came to vehicle density classification. The goals of this research are to lessen the societal and environmental toll of traffic congestion, increase our knowledge of and ability to control Jakarta's traffic, and lay the groundwork for the creation of more advanced traffic monitoring systems. The growing traffic issues in the nation's capital are anticipated to be alleviated with this strategy.

Publisher

Universitas Bhayangkara Surabaya

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3