Real-time monitoring of traffic parameters

Author:

Khazukov Kirill,Shepelev VladimirORCID,Karpeta Tatiana,Shabiev Salavat,Slobodin Ivan,Charbadze Irakli,Alferova Irina

Abstract

AbstractThis study deals with the problem of rea-time obtaining quality data on the road traffic parameters based on the static street video surveillance camera data. The existing road traffic monitoring solutions are based on the use of traffic cameras located directly above the carriageways, which allows one to obtain fragmentary data on the speed and movement pattern of vehicles. The purpose of the study is to develop a system of high-quality and complete collection of real-time data, such as traffic flow intensity, driving directions, and average vehicle speed. At the same time, the data is collected within the entire functional area of intersections and adjacent road sections, which fall within the street video surveillance camera angle. Our solution is based on the use of the YOLOv3 neural network architecture and SORT open-source tracker. To train the neural network, we marked 6000 images and performed augmentation, which allowed us to form a dataset of 4.3 million vehicles. The basic performance of YOLO was improved using an additional mask branch and optimizing the shape of anchors. To determine the vehicle speed, we used a method of perspective transformation of coordinates from the original image to geographical coordinates. Testing of the system at night and in the daytime at six intersections showed the absolute percentage accuracy of vehicle counting, of no less than 92%. The error in determining the vehicle speed by the projection method, taking into account the camera calibration, did not exceed 1.5 km/h.

Funder

south ural state university

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications of deep learning in fish habitat monitoring: A tutorial and survey;Expert Systems with Applications;2024-03

2. Visual Target Locking during Fast Ground Maneuver using Enhanced ORB Predictive Particle Filter;2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET);2023-11-15

3. Real-time road occupancy and traffic measurements using unmanned aerial vehicle and fundamental traffic flow diagrams;Personal and Ubiquitous Computing;2023-08-29

4. Studying the Relationship between the Traffic Flow Structure, the Traffic Capacity of Intersections, and Vehicle-Related Emissions;Mathematics;2023-08-19

5. Big Data Framework for Monitoring Real-Time Vehicular Traffic Flow;2023 International Conference on Engineering, Science and Advanced Technology (ICESAT);2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3