Compact Convolutional Neural Network Accelerator for IoT Endpoint SoC
-
Published:2019-05-05
Issue:5
Volume:8
Page:497
-
ISSN:2079-9292
-
Container-title:Electronics
-
language:en
-
Short-container-title:Electronics
Author:
Ge Fen,Wu Ning,Xiao Hao,Zhang Yuanyuan,Zhou Fang
Abstract
As a classical artificial intelligence algorithm, the convolutional neural network (CNN) algorithm plays an important role in image recognition and classification and is gradually being applied in the Internet of Things (IoT) system. A compact CNN accelerator for the IoT endpoint System-on-Chip (SoC) is proposed in this paper to meet the needs of CNN computations. Based on analysis of the CNN structure, basic functional modules of CNN such as convolution circuit and pooling circuit with a low data bandwidth and a smaller area are designed, and an accelerator is constructed in the form of four acceleration chains. After the acceleration unit design is completed, the Cortex-M3 is used to construct a verification SoC and the designed verification platform is implemented on the FPGA to evaluate the resource consumption and performance analysis of the CNN accelerator. The CNN accelerator achieved a throughput of 6.54 GOPS (giga operations per second) by consuming 4901 LUTs without using any hardware multipliers. The comparison shows that the compact accelerator proposed in this paper makes the CNN computational power of the SoC based on the Cortex-M3 kernel two times higher than the quad-core Cortex-A7 SoC and 67% of the computational power of eight-core Cortex-A53 SoC.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
the Fundamental Research Funds for Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献