An FPGA-Based CNN Accelerator Integrating Depthwise Separable Convolution

Author:

Liu BingORCID,Zou Danyin,Feng Lei,Feng Shou,Fu Ping,Li Junbao

Abstract

The Convolutional Neural Network (CNN) has been used in many fields and has achieved remarkable results, such as image classification, face detection, and speech recognition. Compared to GPU (graphics processing unit) and ASIC, a FPGA (field programmable gate array)-based CNN accelerator has great advantages due to its low power consumption and reconfigurable property. However, FPGA’s extremely limited resources and CNN’s huge amount of parameters and computational complexity pose great challenges to the design. Based on the ZYNQ heterogeneous platform and the coordination of resource and bandwidth issues with the roofline model, the CNN accelerator we designed can accelerate both standard convolution and depthwise separable convolution with a high hardware resource rate. The accelerator can handle network layers of different scales through parameter configuration and maximizes bandwidth and achieves full pipelined by using a data stream interface and ping-pong on-chip cache. The experimental results show that the accelerator designed in this paper can achieve 17.11GOPS for 32bit floating point when it can also accelerate depthwise separable convolution, which has obvious advantages compared with other designs.

Funder

National Natural Science Foundation of China

Open Projects Program of National Laboratory of Pattern Recognition

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3