Using Deep Principal Components Analysis-Based Neural Networks for Fabric Pilling Classification

Author:

Yang ,Lin ORCID,Chen

Abstract

A manufacturer’s fabric first undergoes an abrasion test and manual visual inspection to grade the fabric prior to shipment to ensure that there are no defects present. Manual visual classification consumes a considerable amount of human resources. Furthermore, extended use of the eyes during visual inspection often causes occupational injuries, resulting in a decrease in the efficiency of the entire operation. In order to overcome and avoid such situations, this study proposed the use of deep principal components analysis-based neural networks (DPCANNs) for fabric pilling identification. In the proposed DPCANN, the characteristics of the hairball were automatically captured using deep principal components analysis (DPCA), and the hairball class was identified using the neural network and the support vector machine (SVM). The experimental results showed that the proposed DPCANN has an average accuracy of 99.7% at the hairball level, which is in line with the needs of the industry. The results also confirmed that the proposed hairball classification method is superior to other methods.

Funder

Ministry of Science and Technology of the Republic of China, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3