Evaluation method of fabric pilling grades based on saliency-based deep convolutional network

Author:

Guan Shengqi1ORCID,Liu Dongdong1,Hu Luping2,Lei Ming3,Shi Hongyu1

Affiliation:

1. School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, China

2. School of Mechanical and Electrical Engineering, Xi’an Traffic Engineering Institute, Xi’an 710300, China

3. Department of Mechanical Engineering, University of Minnesota, MN 55455, USA

Abstract

In order to improve the objectivity of fabric pilling evaluation, a saliency deep convolutional network method for fabric pilling evaluation is proposed. First of all, the fabric pilling instrument is used to generate pilling fabric samples as a nonstandard dataset that is added to the standard fabric pilling dataset. The dataset is expanded through data augmentation to increase the number and diversity of pilling data. Then, a saliency preprocessing model is constructed to achieve the preprocessing of the fabric pilling image dataset by fusing the local and global saliency map. Finally, improvements to the ResNet 34 network model are made. The convolutional layer is improved to achieve small target pilling features enhancement. The residual module in the residual network is improved by using ReLU6 as the activation function, giving a down-sampling convolution on the shortcut branch of each residual block and adding average pooling, which avoids the loss of weight information. An improved attention mechanism module is added to extract fully and learn fabric pilling features according to the channel attention mechanism in parallel with the spatial attention mechanism. The recommended method uses standard and nonstandard pilling fabric samples to expand the number and diversity of the dataset. The improved ResNet 34 network model improves the ability of feature extraction and learning, thus improving the accuracy of pilling evaluation. The experimental results show that the average accuracy of the proposed method is 93.88%, which indicates that the pilling grade evaluation algorithm used can effectively achieve the grade evaluation of fabric pilling.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3