Affiliation:
1. Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, China
Abstract
With the rise of labor costs and the advancement of automation in the textile industry, fabric defect detection has become a hot research field in recent years. We proposed a learning-based framework for automatic detection of fabric defects. Firstly, we use a fixed-size square slider to crop the original image to a certain step and regularity. Then an improved histogram equalization is used to enhance each cropped image. Furthermore, the Inception-V1 model is employed to predict the existence of defects in the local area. Finally, we apply the LeNet-5 model, which plays the role of a voting model, to recognize the type of the defect in the fabric. In brief, the proposed framework mainly consists of two steps, namely local defect prediction and global defect recognition. Experiments on the dataset have demonstrated the superior performance in fabric defect detection.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献