Prediction of textile pilling resistance using optical coherence tomography

Author:

Gocławski Jarosław,Sekulska-Nalewajko Joanna,Korzeniewska Ewa

Abstract

AbstractThis paper describes a new method of textile pilling prediction, based on multivariate analysis of the spatial layer above the surface. The original idea of the method is the acquisition of 3D fabric image using optical coherence tomography (OCT) with infrared light, which allows for the fabric fuzz visualization with high sensitivity. The pilling layer, reconstructed with the resolution of $$10\times 10\times 5.5 \; \upmu \mathrm {m}$$ 10 × 10 × 5.5 μ m , includes reliable textural information related to the amount of loose fibers and bunches appearing as a result of abrasion. Pilling intensity was assigned by supervised classification of the textural features using both linear (PLS-DA - partial least squares discriminant analysis, LDA - linear discriminant analysis) and non-linear (SVM - support vector machine) classifiers. The results demonstrated that the method is more suitable for fabrics after short-term abrasion, when the fuzz prevails over tangled fibers in the pilling layer. In that case, pilling grades were predicted with $$>98\%$$ > 98 % accuracy, sensitivity and specificity (for SVM model). The validation accuracy of the tested models after machine abrasion achieves lower values (up to $$90.4\%$$ 90.4 % for LDA model). With our method, we clearly showed that OCT can be used to quantitatively trace appearance changes of fabric samples due to test abrasion.

Funder

the Ministry of Science and Higher Education of Poland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrasound Brain Tomography: Comparison of Deep Learning and Deterministic Methods;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3