Abstract
A Process Design Kit (PDK) has been developed to realize complex integrated circuits in Silicon Carbide (SiC) bipolar low-power technology. The PDK development process included basic device modeling, and design of gate library and parameterized cells. A transistor–transistor logic (TTL)-based PDK gate library design will also be discussed with delay, power, noise margin, and fan-out as main design criterion to tolerate the threshold voltage shift, beta ( β ) and collector current ( I C ) variation of SiC devices as temperature increases. The PDK-based complex digital ICs design flow based on layout, physical verification, and in-house fabrication process will also be demonstrated. Both combinational and sequential circuits have been designed, such as a 720-device ALU and a 520-device 4 bit counter. All the integrated circuits and devices are fully characterized up to 500 °C. The inverter and a D-type flip-flop (DFF) are characterized as benchmark standard cells. The proposed work is a key step towards SiC-based very large-scale integrated (VLSI) circuits implementation for high-temperature applications.
Funder
Knut och Alice Wallenbergs Stiftelse
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献