An Efficient Inverse Synthetic Aperture Imaging Approach for Non-Cooperative Space Targets under Low-Signal-to-Noise-Ratio Conditions

Author:

Yang Zhijun12ORCID,Zhang Chengxiang1ORCID,Liang Dujuan3,Xie Xin2ORCID

Affiliation:

1. Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China

2. Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100811, China

3. Communication Sergeant School, PLA Army Engineering University, Chongqing 400035, China

Abstract

Due to the non-cooperative characteristics of space targets with complex motion, it is difficult to obtain high-quality inverse synthetic aperture (ISAR) images using conventional imaging approaches, posing a new challenge when designing novel approaches, especially under low-signal-to-noise-ratio (SNR) conditions. To overcome the obstacle above, in this work, an efficient ISAR imaging approach based on high-order synchrosqueezing transform and modified multi-scale retinex (HSTMMSR) is proposed. First, the geometry and signal model of non-cooperative space targets with complex motion are established. Second, the echoes in each range bin are modeled as multi-component polynomial phase signals (MCPPSs) after correcting the translational migration and migration through range cells (MTRCs). Additionally, the time–frequency analysis (TFA) method based on HoSST is utilized to generate the time–frequency signal along with the azimuth dimension, where the coarse ISAR image is obtained with the quality indicator, e.g., image entropy, followed by the MMSR method to enhance the result. Both the simulated and measured data experiments validate the effectiveness and robustness of the proposed method.

Funder

Natural Science Foundation of Chongqing, China

National Key Research and Development Program of China

National Natural Science Foundation of China

Foundation of China State Construction Engineering Corporation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3