ISAR Imaging for Maneuvering Targets with Complex Motion Based on Generalized Radon-Fourier Transform and Gradient-Based Descent under Low SNR

Author:

Yang Zhijun,Li Dong,Tan Xiaoheng,Liu Hongqing,Liu Yuchuan,Liao Guisheng

Abstract

The existing inverse synthetic aperture radar (ISAR) imaging algorithms for ship targets with complex three-dimensional (3D) rotational motion are not applicable because of continuous change of image projection plane (IPP), especially under low signal-to-noise-ratio (SNR) condition. To overcome this obstacle, an efficient approach based on generalized Radon Fourier transform (GRFT) and gradient-based descent optimal is proposed in this paper. First, the geometry and signal model for nonstationary IPP of ship targets with complex 3-D rotational motion is established. Furthermore, the two-dimensional (2D) spatial-variant phase errors caused by complex 3-D rotational motion which can seriously blur the imaging performance are derived. Second, to improve the computational efficiency for 2-D spatial-variant phase errors compensation, the coarse motion parameters of ship targets are estimated via the GRFT method. In addition, using the gradient-based descent optimal method, the global optimum solution is iteratively estimated. Meanwhile, to solve the local extremum for cost surface obtained via conventional image entropy, the image entropy combined with subarray averaging is applied to accelerate the global optimal convergence. The main contributions of the proposed method are: (1) the geometry and signal model for ship targets with a complex 3-D rotational motion under nonstationary IPP are established; (2) the image entropy conjunct with subarray averaging operation is proposed to accelerate the global optimal convergence; (3) the proposed method can ensure the imaging accuracy even with high imaging efficiency thanks to the sole optimal solution generated by using the subarray averaging and image entropy. Several experiments using simulated and electromagnetic data are performed to validate the effectiveness of the proposed approach.

Funder

National Natural Science Foundation of China

the graduate research and innovation foundation of Chongqing

Chongqing Research Program of Basic Research and Frontier Technology

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3