Abstract
Translational motion compensation and azimuth compression are two essential processes in inverse synthetic aperture radar (ISAR) imaging. The anterior process recovers coherence between pulses, during which the phase autofocus algorithm is usually used. For ISAR imaging of maneuvering targets, conventional phase autofocus methods cannot effectively eliminate the phase error due to the adverse influence of the quadratic phase terms caused by the target’s maneuvering motion, which leads to the blurring of ISAR images. To address this problem, an iterative phase autofocus approach for ISAR imaging of maneuvering targets is proposed in this paper. Considering the coupling between translational phase errors and quadratic phase terms, minimum entropy-based autofocus (MEA) method and adaptive modified Fourier transform (MFT) are performed iteratively to realize better imaging results. In this way, both the translational phase error and quadratic phase terms induced by target’s maneuvering motion can be compensated effectively, and the globally optimal ISAR image is obtained. Comparison ISAR imaging results indicates that the new approach achieves stable and better ISAR image under a simple procedure. Experimental results show that the image entropy of the proposed approach is 0.2 smaller than the MEA method, which validates the effectiveness of the new approach.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献