A Study on Machine Learning-Enhanced Roadside Unit-Based Detection of Abnormal Driving in Autonomous Vehicles

Author:

Yun Keon1,Yun Heesun1,Lee Sangmin1,Oh Jinhyeok1,Kim Minchul1ORCID,Lim Myongcheol1,Lee Juntaek2,Kim Chanmin2,Seo Jiwon2,Choi Jinyoung3

Affiliation:

1. Pentasecurity, Incorporated, 9F, 115, Yeouigongwon-ro, Yeongdeungpo-gu, Seoul 07241, Republic of Korea

2. Korea Automotive Technology Institute, 4F, 94, Cheongna emerald-ro, Seo-gu, Incheon 22739, Republic of Korea

3. Xbrain, Incorporated, 5F, 168, Yeoksam-ro, Gangnam-gu, Seoul 06248, Republic of Korea

Abstract

Ensuring the safety of autonomous vehicles is becoming increasingly important with ongoing technological advancements. In this paper, we suggest a machine learning-based approach for detecting and responding to various abnormal behaviors within the V2X system, a system that mirrors real-world road conditions. Our system, including the RSU, is designed to identify vehicles exhibiting abnormal driving. Abnormal driving can arise from various causes, such as communication delays, sensor errors, navigation system malfunctions, environmental challenges, and cybersecurity threats. We simulated exploring three primary scenarios of abnormal driving: sensor errors, overlapping vehicles, and counterflow driving. The applicability of machine learning algorithms for detecting these anomalies was evaluated. The Minisom algorithm, in particular, demonstrated high accuracy, recall, and precision in identifying sensor errors, vehicle overlaps, and counterflow situations. Notably, changes in the vehicle’s direction and its characteristics proved to be significant indicators in the Basic Safety Messages (BSM). We propose adding a new element called linePosition to BSM Part 2, enhancing our ability to promptly detect and address vehicle abnormalities. This addition underpins the technical capabilities of RSU systems equipped with edge computing, enabling real-time analysis of vehicle data and appropriate responsive measures. In this paper, we emphasize the effectiveness of machine learning in identifying and responding to the abnormal behavior of autonomous vehicles, offering new ways to enhance vehicle safety and facilitate smoother road traffic flow.

Funder

Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3