Traffic Management: Multi-Scale Vehicle Detection in Varying Weather Conditions Using YOLOv4 and Spatial Pyramid Pooling Network

Author:

Humayun MamoonaORCID,Ashfaq Farzeen,Jhanjhi Noor ZamanORCID,Alsadun Marwah Khalid

Abstract

Detecting and counting on road vehicles is a key task in intelligent transport management and surveillance systems. The applicability lies both in urban and highway traffic monitoring and control, particularly in difficult weather and traffic conditions. In the past, the task has been performed through data acquired from sensors and conventional image processing toolbox. However, with the advent of emerging deep learning based smart computer vision systems the task has become computationally efficient and reliable. The data acquired from road mounted surveillance cameras can be used to train models which can detect and track on road vehicles for smart traffic analysis and handling problems such as traffic congestion particularly in harsh weather conditions where there are poor visibility issues because of low illumination and blurring. Different vehicle detection algorithms focusing the same issue deal only with on or two specific conditions. In this research, we address detecting vehicles in a scene in multiple weather scenarios including haze, dust and sandstorms, snowy and rainy weather both in day and nighttime. The proposed architecture uses CSPDarknet53 as baseline architecture modified with spatial pyramid pooling (SPP-NET) layer and reduced Batch Normalization layers. We also augment the DAWN Dataset with different techniques including Hue, Saturation, Exposure, Brightness, Darkness, Blur and Noise. This not only increases the size of the dataset but also make the detection more challenging. The model obtained mean average precision of 81% during training and detected smallest vehicle present in the image

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3