Comparison of a Hybrid Firefly–Particle Swarm Optimization Algorithm with Six Hybrid Firefly–Differential Evolution Algorithms and an Effective Cost-Saving Allocation Method for Ridesharing Recommendation Systems

Author:

Hsieh Fu-Shiung1ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 413310, Taiwan

Abstract

The optimization and allocation of transport cost savings among stakeholders are two important issues that influence the satisfaction of information providers, drivers and passengers in ridesharing recommendation systems. For optimization issues, finding optimal solutions for nonconvex constrained discrete ridesharing optimization problems poses a challenge due to computational complexity. For the allocation of transport cost savings issues, the development of an effective method to allocate cost savings in ridesharing recommendation systems is an urgent need to improve the acceptability of ridesharing. The hybridization of different metaheuristic approaches has demonstrated its advantages in tackling the complexity of optimization problems. The principle of the hybridization of metaheuristic approaches is similar to a marriage of two people with the goal of having a happy ending. However, the effectiveness of hybrid metaheuristic algorithms is unknown a priori and depends on the problem to be solved. This is similar to a situation where no one knows whether a marriage will have a happy ending a priori. Whether the hybridization of the Firefly Algorithm (FA) with Particle Swarm Optimization (PSO) or Differential Evolution (DE) can work effectively in solving ridesharing optimization problems needs further study. Motivated by deficiencies in existing studies, this paper focuses on the effectiveness of hybrid metaheuristic algorithms for solving ridesharing problems based on the hybridization of FA with PSO or the hybridization of FA with DE. Another focus of this paper is to propose and study the effectiveness of a new method to allocate ridesharing cost savings to the stakeholders in ridesharing systems. The developed hybrid metaheuristic algorithms and the allocation method have been compared with examples of several application scenarios to illustrate their effectiveness. The results indicate that hybridizing FA with PSO creates a more efficient algorithm, whereas hybridizing FA with DE does not lead to a more efficient algorithm for the ridesharing recommendation problem. An interesting finding of this study is very similar to what happens in the real world: “Not all marriages have happy endings”.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Reference50 articles.

1. (2023, November 20). Sustainable Transportation and Fuels, Available online: https://www.energy.gov/eere/sustainable-transportation-and-fuels.

2. (2023, November 20). AGENDA 21. Available online: https://sustainabledevelopment.un.org/content/documents/Agenda21.pdf.

3. (2023, November 20). Plan of Implementation of the World Summit on Sustainable Development. Available online: https://library.arcticportal.org/1679/1/Johannesburg_Plan_of_Implementation.pdf.

4. (2023, November 20). Sustainable Transport. Available online: https://sdgs.un.org/topics/sustainable-transport.

5. (2023, November 20). Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3