A Self-Adaptive Neighborhood Search Differential Evolution Algorithm for Planning Sustainable Sequential Cyber–Physical Production Systems

Author:

Hsieh Fu-Shiung1ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 413310, Taiwan

Abstract

Although Cyber–Physical Systems (CPSs) provide a flexible architecture for enterprises to deal with changing demand, an effective method to organize and allocate resources while considering sustainability factors is required to meet customers’ order requirements and mitigate negative impacts on the environment. The planning of processes to achieve sustainable CPSs becomes an important issue to meet demand timely in a dynamic environment. The problem with planning processes in sustainable CPSs is the determination of the configuration of workflows/resources to compose processes with desirable properties, taking into account time and energy consumption factors. The planning problem in sustainable CPSs can be formulated as an integer programming problem with constraints, and this poses a challenge due to computational complexity. Furthermore, the ever-shrinking life cycle of technologies leads to frequent changes in processes and makes the planning of processes a challenging task. To plan processes in a changing environment, an effective planning method must be developed to automate the planning task. To tackle computational complexity, evolutionary computation approaches such as bio-inspired computing and metaheuristics have been adopted extensively in solving complex optimization problems. This paper aims to propose a solution methodology and an effective evolutionary algorithm with a local search mechanism to support the planning of processes in sustainable CPSs based on an auction mechanism. To achieve this goal, we focus on developing a self-adaptive neighborhood search-based Differential Evolution method. An effective planning method should be robust in terms of performance with respect to algorithmic parameters. We assess the performance and robustness of this approach by performing experiments for several cases. By comparing the results of these experiments, it shows that the proposed method outperforms several other algorithms in the literature. To illustrate the robustness of the proposed self-adaptive algorithm, experiments with different settings of algorithmic parameters were conducted. The results show that the proposed self-adaptive algorithm is robust with respect to algorithmic parameters.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3