Multimodal Global Trajectory Planner for Autonomous Underwater Vehicles

Author:

Kot Rafał1ORCID

Affiliation:

1. Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, 81-127 Gdynia, Poland

Abstract

The underwater environment introduces many limitations that must be faced when designing an autonomous underwater vehicle (AUV). One of the most important issues is developing an effective vehicle movement control and mission planning system. This article presents a global trajectory planning system based on a multimodal approach. The trajectory of the vehicle’s movement has been divided into segments between introduced waypoints and calculated in parallel by advanced path planning methods: modified A* method, artificial potential field (APF), genetic algorithm (GA), particle swarm optimisation (PSO), and rapidly-exploring random tree (RRT). The shortest paths in each planned segment are selected and combined to give the resulting trajectory. A comparison of the results obtained by the proposed approach with the path calculated by each method individually confirms the increase in the system’s effectiveness by ensuring a shorter trajectory and improving the system’s reliability. Expressing the final trajectory in the form of geographical coordinates with a specific arrival time allows the implementation of calculation results in mission planning for autonomous underwater vehicles used commercially and in the military, as well as for autonomous surface vehicles (ASVs) equipped with trajectory tracking control systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3