DFANet: Denoising Frequency Attention Network for Building Footprint Extraction in Very-High-Resolution Remote Sensing Images

Author:

Lu Lei1,Liu Tongfei2ORCID,Jiang Fenlong3ORCID,Han Bei1,Zhao Peng1,Wang Guoqiang1

Affiliation:

1. School of Information Engineering, Yulin University, Yulin 719000, China

2. Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China

3. Key Laboratory of Collaborative Intelligence Systems, School of Computer Science and Technology, Ministry of Education, Xidian University, Xi’an 710071, China

Abstract

With the rapid development of very-high-resolution (VHR) remote-sensing technology, automatic identification and extraction of building footprints are significant for tracking urban development and evolution. Nevertheless, while VHR can more accurately characterize the details of buildings, it also inevitably enhances the background interference and noise information, which degrades the fine-grained detection of building footprints. In order to tackle the above issues, the attention mechanism is intensively exploited to provide a feasible solution. The attention mechanism is a computational intelligence technique inspired by the biological vision system capable of rapidly and automatically catching critical information. On the basis of the a priori frequency difference of different ground objects, we propose the denoising frequency attention network (DFANet) for building footprint extraction in VHR images. Specifically, we design the denoising frequency attention module and pyramid pooling module, which are embedded into the encoder–decoder network architecture. The denoising frequency attention module enables efficient filtering of high-frequency noises in the feature maps and enhancement of the frequency information related to buildings. In addition, the pyramid pooling module is leveraged to strengthen the adaptability and robustness of buildings at different scales. Experimental results of two commonly used real datasets demonstrate the effectiveness and superiority of the proposed method; the visualization and analysis also prove the critical role of the proposal.

Funder

National Science Foundation of China Funding Project for Department of Education of Shaanxi Province of China

Natural Science and Technology Project Plan in Yulin of China

Natural Science Basic Research Plan in Shaanxi Province of China

Scientific Research Program Funded by Yulin National High Tech Industrial Development Zone

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3