Abstract
The rapid development in deep learning and computer vision has introduced new opportunities and paradigms for building extraction from remote sensing images. In this paper, we propose a novel fully convolutional network (FCN), in which a spatial residual inception (SRI) module is proposed to capture and aggregate multi-scale contexts for semantic understanding by successively fusing multi-level features. The proposed SRI-Net is capable of accurately detecting large buildings that might be easily omitted while retaining global morphological characteristics and local details. On the other hand, to improve computational efficiency, depthwise separable convolutions and convolution factorization are introduced to significantly decrease the number of model parameters. The proposed model is evaluated on the Inria Aerial Image Labeling Dataset and the Wuhan University (WHU) Aerial Building Dataset. The experimental results show that the proposed methods exhibit significant improvements compared with several state-of-the-art FCNs, including SegNet, U-Net, RefineNet, and DeepLab v3+. The proposed model shows promising potential for building detection from remote sensing images on a large scale.
Funder
Key National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
153 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献