D2Former: Dual-Domain Transformer for Change Detection in VHR Remote Sensing Images

Author:

Zheng Huanhuan12ORCID,Liu Hui1,Lu Lei2,Li Shiyin1,Lin Jiyan2

Affiliation:

1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Information Engineering, Yulin University, Yulin 719000, China

Abstract

Computational intelligence technologies have been extensively applied for the interpretation of remote sensing imagery. Recently, the computational-intelligence-based Transformer change detection (CD) approach has attracted increasing attention. However, the current Transformer-based CD method can better capture global features, but there is no good solution for the loss of local detail information. For this reason, introducing semantic and frequency information from the perspective of a dual-domain can be beneficial for improving the representation of detailed features to improve CD performance. To overcome this limitation, a dual-domain Transformer (D2Former) is proposed for CD. Firstly, we adopt a semantic tokenizer to capture the semantic information, which promotes the enrichment and refinement of semantic change information in the Transformer. Secondly, a frequency tokenizer is introduced to acquire the frequency information of the features, which offers the proposed D2Former another aspect and dimension to enhance the ability to detect change information. Therefore, the proposed D2Former employs dual-domain tokenizers to acquire and fuse the feature representation with rich semantic and frequency information, which can refine the features to acquire more fine-grained CD ability. Extensive experiments on three CD benchmark datasets demonstrate that the proposed D2Former obviously outperforms some other existing approaches. The results present the competitive performance of our method on the WHU-CD, LEVIR-CD, and GZ-CD datasets, for which it achieved F1-Score metrics of 92.85%, 90.60%, and 87.02%, respectively.

Funder

Yulin Science and Technology Bureau Industry University Research Project

National Natural Science Foundation Regional Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3