Abstract
Design optimization of RF low-noise amplifiers (LNAs) remains a time-consuming and complex process. Iterations are needed to adjust impedance matching, gain, and noise figure (NF) simultaneously. The process can involve more iterations to adjust the non-linear behavior of the circuit which can be represented by the input-referred third-order intercept (IIP3). In this work, we present a variation-aware automated design and optimization flow for a wide-band noise-canceling LNA. We include the circuit non-linearity in the optimization flow without using a simulator in the loop. By describing the transistors using precomputed lookup tables (LUTs), a design database that contains 200,000 design points is generated in 3 s only without non-linearity computation and 10 s when non-linearity is taken into account. Using a gm/ID-based correct-by-construction design procedure, the generated design points automatically satisfy proper biasing, input matching, and gain matching requirements. The generated database enables the designer to visualize the design space and explore the design trade-offs. Moreover, multi-objective optimization across corners for a given set of specifications is applied to find the Pareto-optimal fronts of the design figures-of-merit. We demonstrate the presented flow using two design examples in a 65 nm process and the results are verified using Cadence Spectre.
Funder
Information Technology Industry Development Agency
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference17 articles.
1. Analog Circuits and Systems Optimization Based on Evolutionary Computation Techniques;Barros,2010
2. Computer-Aided Design of Analog Integrated Circuits and Systems;Rutenbar,2002
3. Analog IC Design Using Precomputed Lookup Tables: Challenges and Solutions
4. Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling
5. A Low-Power Wideband CMOS LNA for WiMAX
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献