A Dual-Armed Robotic Puncture System: Design, Implementation and Preliminary Tests

Author:

Gao YongzhuoORCID,Liu Xiaomin,Zhang Xu,Zhou Zhanfeng,Jiang Wenhe,Chen Lei,Liu Zheng,Wu Dongmei,Dong Wei

Abstract

Traditional renal puncture surgery requires manual operation, which has a poor puncture effect, low surgical success rate, and high incidence of postoperative complications. Robot-assisted puncture surgery can effectively improve the accuracy of punctures, improve the success rate of surgery, and reduce the occurrence of postoperative complications. This paper provides a dual-armed robotic puncture scheme to assist surgeons. The system is divided into an ultrasound scanning arm and a puncture arm. Both robotic arms with a compliant positioning function and master–slave control function are designed, respectively, and the control system is achieved. The puncture arm’s position and posture are decoupled by the wrist RCM mechanism and the arm decoupling mechanism. According to the independent joint control principle, the compliant positioning function is realized based on the single-joint human–computer interactive admittance control. The simulation and tests verify its functions and performance. The differential motion incremental master–slave mapping strategy is used to realize the master–slave control function. The error feedback link is introduced to solve the cumulative error problem in the master–slave control. The dual-armed robotic puncture system prototype is established and animal tests verify the effectiveness.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. Analysis of complications in ultrasound-guided percutaneous renal biopsy;Jun;Chin. J. Ultrasound Med.,2006

2. Timing of Complications in Percutaneous Renal Biopsy

3. Acubot: a robot for radiological interventions

4. Multi-Imager Compatible, MR Safe, Remote Center of Motion Needle-Guide Robot

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3