A systematic review of image-guided, surgical robot-assisted percutaneous puncture: Challenges and benefits
-
Published:2023
Issue:5
Volume:20
Page:8375-8399
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Cheng Kai1, Li Lixia1, Du Yanmin1, Wang Jiangtao1, Chen Zhenghua1, Liu Jian1, Zhang Xiangsheng1, Dong Lin2, Shen Yuanyuan1, Yang Zhenlin1
Affiliation:
1. Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China 2. Center on Frontiers of Computing Studies, Peking University, Beijing 100089, China
Abstract
<abstract><p>Percutaneous puncture is a common medical procedure that involves accessing an internal organ or tissue through the skin. Image guidance and surgical robots have been increasingly used to assist with percutaneous procedures, but the challenges and benefits of these technologies have not been thoroughly explored. The aims of this systematic review are to furnish an overview of the challenges and benefits of image-guided, surgical robot-assisted percutaneous puncture and to provide evidence on this approach. We searched several electronic databases for studies on image-guided, surgical robot-assisted percutaneous punctures published between January 2018 and December 2022. The final analysis refers to 53 studies in total. The results of this review suggest that image guidance and surgical robots can improve the accuracy and precision of percutaneous procedures, decrease radiation exposure to patients and medical personnel and lower the risk of complications. However, there are many challenges related to the use of these technologies, such as the integration of the robot and operating room, immature robotic perception, and deviation of needle insertion. In conclusion, image-guided, surgical robot-assisted percutaneous puncture offers many potential benefits, but further research is needed to fully understand the challenges and optimize the utilization of these technologies in clinical practice.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference88 articles.
1. E. Crosas-Molist, R. Samain, L. Kohlhammer, J. L. Orgaz, S. L. George, O. Maiques, et al., Rho gtpase signaling in cancer progression and dissemination, Phys. Rev., 102 (2022), 455–510. https://doi.org/10.1152/physrev.00045.2020 2. A. F. Chambers, A. C. Groom, I. C. MacDonald, Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer, 2 (2002), 563–572. https://doi.org/10.1038/nrc865 3. M. S. Pepe, R. Etzioni, Z. Feng, J. D. Potter, M. L. Thompson, M. Thornquist, et al., Phases of biomarker development for early detection of cancer, JNCI-J NATL Cancer I, 93 (2001), 1054–1061. https://doi.org/10.1038/nrc865 4. R. A. Smith, V. Cokkinides, H. J. Eyre, American cancer society guidelines for the early detection of cancer, 2006, CA Cancer J. Clin., 56 (2006), 11–25. https://doi.org/10.3322/canjclin.52.1.8 5. M. Richards, The size of the prize for earlier diagnosis of cancer in england, Br. J. Cancer, 101 (2009), S125–S129. https://doi.org/10.1038/sj.bjc.6605402
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|