The Method of Static Semantic Map Construction Based on Instance Segmentation and Dynamic Point Elimination

Author:

Li JingyuORCID,Zhang Rongfen,Liu Yuhong,Zhang Zaiteng,Fan RunzeORCID,Liu Wenjiang

Abstract

Semantic information usually contains a description of the environment content, which enables mobile robot to understand the environment and improves its ability to interact with the environment. In high-level human–computer interaction application, the Simultaneous Localization and Mapping (SLAM) system not only needs higher accuracy and robustness, but also has the ability to construct a static semantic map of the environment. However, traditional visual SLAM lacks semantic information. Furthermore, in an actual scene, dynamic objects will reduce the system performance and also generate redundancy when constructing map. these all directly affect the robot’s ability to perceive and understand the surrounding environment. Based on ORB-SLAM3, this article proposes a new Algorithm that uses semantic information and the global dense optical flow as constraints to generate dynamic-static mask and eliminate dynamic objects. then, to further construct a static 3D semantic map under indoor dynamic environments, a fusion of 2D semantic information and 3D point cloud is carried out. the experimental results on different types of dataset sequences show that, compared with original ORB-SLAM3, both Absolute Pose Error (APE) and Relative Pose Error (RPE) have been ameliorated to varying degrees, especially on freiburg3-walking-xyz, the APE reduced by 97.78% from the original average value of 0.523, and RPE reduced by 52.33% from the original average value of 0.0193. Compared with DS-SLAM and DynaSLAM, our system improves real-time performance while ensuring accuracy and robustness. Meanwhile, the expected map with environmental semantic information is built, and the map redundancy caused by dynamic objects is successfully reduced. the test results in real scenes further demonstrate the effect of constructing static semantic maps and prove the effectiveness of our Algorithm.

Funder

Guizhou Provincial Science and Technology Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3