TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments

Author:

Zhang Yongchao1ORCID,Li Yuanming23,Chen Pengzhan13ORCID

Affiliation:

1. School of Intelligent Manufacturing, Taizhou University, Taizhou 318000, China

2. Department of Electrical Engineering, Ganzhou Polytechnic, Ganzhou 341000, China

3. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China

Abstract

Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3