YOLO-Xray: A Bubble Defect Detection Algorithm for Chip X-ray Images Based on Improved YOLOv5

Author:

Wang Jie1ORCID,Lin Bin2ORCID,Li Gaomin1,Zhou Yuezheng1,Zhong Lijun1,Li Xuan3,Zhang Xiaohu1ORCID

Affiliation:

1. School of Aeronautics and Astronautics, Sun Yat-sen Unviersity, Guangzhou 510725, China

2. College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China

3. China Aerospace Components Engineering Center, Beijing 100094, China

Abstract

In the manufacturing of chips, the accurate and effective detection of internal bubble defects of chips is essential to maintain product reliability. In general, the inspection is performed manually by viewing X-ray images, which is time-consuming and less reliable. To solve the above problems, an improved bubble defect detection model YOLO-Xray based on the YOLOv5 algorithm for chip X-ray images is proposed. First, the chip X-ray images are preprocessed by image segmentation to construct the chip X-ray defect dataset, namely, CXray. Then, in the input stage, the K-means++ algorithm is used to re-cluster the CXray dataset to generate the anchors suitable for our dataset. In the backbone network, a micro-scale detection head is added to improve the capabilities for small defect detection. In the neck network, the bi-direction feature fusion idea of BiFPN is used to construct a new feature fusion network based on the improved backbone to fuse the semantic features of different layers. In addition, the Quality Focal Loss function is used to replace the cross-entropy loss function to solve the imbalance of positive and negative samples. The experimental results show that the mean average precision (mAP) of the YOLO-Xray algorithm on the CXray dataset reaches 93.5%, which is 5.1% higher than the original YOLOv5. Meanwhile, the YOLO-Xray algorithm achieves state-of-the-art detection accuracy and speed compared with other mainstream object detection models. This shows the proposed YOLO-Xray algorithm can provide technical support for bubble defect detection in chip X-ray images. The CXray dataset is also open and available at CXray.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3