Real-Time ISR-YOLOv4 Based Small Object Detection for Safe Shop Floor in Smart Factories

Author:

Ku Byungjin,Kim Kangsan,Jeong JongpilORCID

Abstract

Wearing a hard hat can effectively improve the safety of workers on a construction site. However, workers often take off their helmets because they have a weak sense of safety and are uncomfortable, and this action poses a large danger. Workers not wearing hard hats are more likely to be injured in accidents such as human falls and vertical falls. Therefore, the detection of wearing a helmet is an important step in the safety management of a construction site, and it is urgent to detect helmets quickly and accurately. However, the existing manual monitor is labor intensive, and it is difficult to popularize the method of mounting the sensor on the helmet. Thus, in this paper, we propose an AI method to detect the wearing of a helmet with satisfactory accuracy with a high detection rate. Our method selects based on YOLOv4 and adds an image super resolution (ISR) module at the end of the input. Afterward, the image resolution is increased, and the noise in the image is removed. Then, dense blocks are used to replace residual blocks in the backbone network using the CSPDarknet53 framework to reduce unnecessary computation and reduce the number of network structure parameters. The neck then uses a combination of SPPnet and PANnet to take full advantage of the small target’s capabilities in the image. We add foreground and background balance loss functions to the YOLOv4 loss function part to solve the image background and foreground imbalance problem. Experiments performed using self-constructed datasets show that the proposed method has more efficacy than the currently available small target detection methods. Finally, our model achieves an average precision of 93.3%, a 7.8% increase over the original algorithm, and it takes only 3.0 ms to detect an image at 416 × 416.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference41 articles.

1. Learning accurate personal protective equipment detection from virtual worlds

2. Deep Learning-Based Safety Helmet Detection in Engineering Management Based on Convolutional Neural Networks

3. A survey on the implementation of safety standards of on-going construction projects in Cagayan de Oro City, Philippines;Cabahug;Mindanao J. Sci. Technol.,2014

4. Improved YOLOv3 algorithm and its application in helmet detection;Wang;Comput. Eng. Appl.,2020

5. A Two-Stage Fall Recognition Algorithm Based on Human Posture Features

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3