Efficient Lossy Compression of Video Sequences of Automotive High-Dynamic Range Image Sensors for Advanced Driver-Assistance Systems and Autonomous Vehicles

Author:

Pawłowski Paweł1ORCID,Piniarski Karol1ORCID

Affiliation:

1. Division of Signal Processing and Electronic Systems, Institute of Automatic Control and Robotics, Poznan University of Technology, Jana Pawła 24, 60-965 Poznań, Poland

Abstract

In this paper, we introduce an efficient lossy coding procedure specifically tailored for handling video sequences of automotive high-dynamic range (HDR) image sensors in advanced driver-assistance systems (ADASs) for autonomous vehicles. Nowadays, mainly for security reasons, lossless compression is used in the automotive industry. However, it offers very low compression rates. To obtain higher compression rates, we suggest using lossy codecs, especially when testing image processing algorithms in software in-the-loop (SiL) or hardware-in-the-loop (HiL) conditions. Our approach leverages the high-quality VP9 codec, operating in two distinct modes: grayscale image compression for automatic image analysis and color (in RGB format) image compression for manual analysis. In both modes, images are acquired from the automotive-specific RCCC (red, clear, clear, clear) image sensor. The codec is designed to achieve a controlled image quality and state-of-the-art compression ratios while maintaining real-time feasibility. In automotive applications, the inherent data loss poses challenges associated with lossy codecs, particularly in rapidly changing scenes with intricate details. To address this, we propose configuring the lossy codecs in variable bitrate (VBR) mode with a constrained quality (CQ) parameter. By adjusting the quantization parameter, users can tailor the codec behavior to their specific application requirements. In this context, a detailed analysis of the quality of lossy compressed images in terms of the structural similarity index metric (SSIM) and the peak signal-to-noise ratio (PSNR) metrics is presented. With this analysis, we extracted some codec parameters, which have an important impact on preservation of video quality and compression ratio. The proposed compression settings are very efficient: the compression ratios vary from 51 to 7765 for grayscale image mode and from 4.51 to 602.6 for RGB image mode, depending on the specified output image quality settings. We reached 129 frames per second (fps) for compression and 315 fps for decompression in grayscale mode and 102 fps for compression and 121 fps for decompression in the RGB mode. These make it possible to achieve a much higher compression ratio compared to lossless compression while maintaining control over image quality.

Funder

Poznan University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3