Inf-OSRGAN: Optimized Blind Super-Resolution GAN for Infrared Images

Author:

Xu Zhaofei1ORCID,Gao Jie2,Wang Xianghui2,Kang Chong2

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

2. Yantai Research Institute, Harbin Engineering University, Yantai 265500, China

Abstract

With the widespread application of infrared technology in military, security, medical, and other fields, the demand for high-definition infrared images has been increasing. However, the complexity of the noise introduced during the imaging process and high acquisition costs limit the scope of research on super-resolution algorithms for infrared images, particularly when compared to the visible light domain. Furthermore, the lack of high-quality infrared image datasets poses challenges in algorithm design and evaluation. To address these challenges, this paper proposes an optimized super-resolution algorithm for infrared images. Firstly, we construct an infrared image super-resolution dataset, which serves as a robust foundation for algorithm design and rigorous evaluation. Secondly, in the degradation process, we introduce a gate mechanism and random shuffle to enrich the degradation space and more comprehensively simulate the real-world degradation of infrared images. We train an RRDBNet super-resolution generator integrating the aforementioned degradation model. Additionally, we incorporate spatially correlative loss to leverage spatial–structural information, thereby enhancing detail preservation and reconstruction in the super-resolution algorithm. Through experiments and evaluations, our method achieved considerable performance improvements in the infrared image super-resolution task. Compared to traditional methods, our method was able to better restore the details and clarity of infrared images.

Funder

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3