Infrared Image Small-Target Detection Based on Improved FCOS and Spatio-Temporal Features

Author:

Yao Shengbo,Zhu Qiuyu,Zhang Tao,Cui Wennan,Yan Peimin

Abstract

The research of infrared image small-target detection is of great significance to security monitoring, satellite remote sensing, infrared early warning, and precision guidance systems. However, small infrared targets occupy few pixels and lack color and texture features, which make the detection of small infrared targets extremely challenging. This paper proposes an effective single-stage infrared small-target detection method based on improved FCOS (Fully Convolutional One-Stage Object Detection) and spatio-temporal features. In view of the simple features of infrared small targets and the requirement of real-time detection, based on the standard FCOS network, we propose a lightweight network model combined with traditional filtering methods, whose response for small infrared targets is enhanced, and the background response is suppressed. At the same time, in order to eliminate the influence of static noise points in the infrared image on the detection of small infrared targets, time domain features are added to the improved FCOS network in the form of image sequences, so that the network can learn the spatio-temporal correlation features in the image sequence. Finally, compared with current typical infrared small-target detection methods, the comparative experiments show that the improved FCOS method proposed in this paper had better detection accuracy and real-time performance for infrared small targets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3