YOLO-ISTD: An infrared small target detection method based on YOLOv5-S

Author:

Hao Ziqiang,Wang ZhuohaoORCID,Xu Xiaoyu,Jiang Zheng,Sun Zhicheng

Abstract

Infrared target detection is widely used in industrial fields, such as environmental monitoring, automatic driving, etc., and the detection of weak targets is one of the most challenging research topics in this field. Due to the small size of these targets, limited information and less surrounding contextual information, it increases the difficulty of target detection and recognition. To address these issues, this paper proposes YOLO-ISTD, an improved method for infrared small target detection based on the YOLOv5-S framework. Firstly, we propose a feature extraction module called SACSP, which incorporates the Shuffle Attention mechanism and makes certain adjustments to the CSP structure, enhancing the feature extraction capability and improving the performance of the detector. Secondly, we introduce a feature fusion module called NL-SPPF. By introducing an NL-Block, the network is able to capture richer long-range features, better capturing the correlation between background information and targets, thereby enhancing the detection capability for small targets. Lastly, we propose a modified K-means clustering algorithm based on Distance-IoU (DIoU), called K-means_DIOU, to improve the accuracy of clustering and generate anchors suitable for the task. Additionally, modifications are made to the detection heads in YOLOv5-S. The original 8, 16, and 32 times downsampling detection heads are replaced with 4, 8, and 16 times downsampling detection heads, capturing more informative coarse-grained features. This enables better understanding of the overall characteristics and structure of the targets, resulting in improved representation and localization of small targets. Experimental results demonstrate significant achievements of YOLO-ISTD on the NUST-SIRST dataset, with an improvement of 8.568% in mAP@0.5 and 8.618% in mAP@0.95. Compared to the comparative models, the proposed approach effectively addresses issues of missed detections and false alarms in the detection results, leading to substantial improvements in precision, recall, and model convergence speed.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3