GM-DETR: Research on a Defect Detection Method Based on Improved DETR

Author:

Liu Xin1ORCID,Yang Xudong1,Shao Lianhe1,Wang Xihan1,Gao Quanli1ORCID,Shi Hongbo2

Affiliation:

1. School of Computer Science, State and Local Joint Engineering Research Center for Advanced Networking & Intelligent Information Services, Xi’an Polytechnic University, Xi’an 710048, China

2. Shaanxi Province Institute of Water Resources and Electric Power Investigation and Design, Xi’an 710001, China

Abstract

Defect detection is an indispensable part of the industrial intelligence process. The introduction of the DETR model marked the successful application of a transformer for defect detection, achieving true end-to-end detection. However, due to the complexity of defective backgrounds, low resolutions can lead to a lack of image detail control and slow convergence of the DETR model. To address these issues, we proposed a defect detection method based on an improved DETR model, called the GM-DETR. We optimized the DETR model by integrating GAM global attention with CNN feature extraction and matching features. This optimization process reduces the defect information diffusion and enhances the global feature interaction, improving the neural network’s performance and ability to recognize target defects in complex backgrounds. Next, to filter out unnecessary model parameters, we proposed a layer pruning strategy to optimize the decoding layer, thereby reducing the model’s parameter count. In addition, to address the issue of poor sensitivity of the original loss function to small differences in defect targets, we replaced the L1 loss in the original loss function with MSE loss to accelerate the network’s convergence speed and improve the model’s recognition accuracy. We conducted experiments on a dataset of road pothole defects to further validate the effectiveness of the GM-DETR model. The results demonstrate that the improved model exhibits better performance, with an increase in average precision of 4.9% (mAP@0.5), while reducing the parameter count by 12.9%.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3