Actuation Behavior of Hydraulically Amplified Self-Healing Electrostatic (HASEL) Actuator via Dimensional Analysis

Author:

Washington Alexandrea1,Su Ji2,Kim Kwang J.1ORCID

Affiliation:

1. Active Materials and Smart Living (AMSL) Laboratory, Department of Mechanical Engineering, University of Nevada, Las Vegas, NV 89154, USA

2. Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, VA 23666, USA

Abstract

Electroactive polymer (EAP) actuators are an example of a novel soft material device that can be used for several applications including artificial muscles and lenses. The field of EAPs can be broken down into a few fields; however, the field that will be discussed in this study is that of Soft Electrohydraulic (SEH or EH) actuators. The device that will specifically be studied is the Hydraulically Amplified Self-Healing Electrostatic (HASEL) actuator. The design of the HASEL actuator is simple. There are two compliant films that house a dielectric liquid, and with the application of a voltage potential, there is an output displacement and force. However, the actuation mechanism is more complex, thus there is a need to understand theoretically and experimentally how the actuator works. This study analytically describes the electrode closure and the experimental testing of the actuators. Then, dimensional analysis techniques are used to determine what factors are contributing to the function of the actuator. For this study, eight dimensionless Π groups were found based on the derived analytical equation. These Π groups were determined based on the input voltage, density, viscosity, and elastic modulus of the materials; these were chosen because of their major contribution to the experimental data. The Π groups that are of particular importance are related to the characteristic length, which is directly related to the displacement of the fluid, the fluid velocity, the fluid pressure, and the dielectric constant. From this study, relationships between the output force, the electrostatic contributions, and other parameters were determined. All in all, this type of analysis can provide guidance on the development of high-performance HASEL actuators.

Funder

NASA’s Office of STEM Engagement/NASA Fellowship

US National Science Foundation

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3