Abstract
Abstract
The development of a soft actuator with high displacement is crucial for the effective operation of micropumps, ensuring a high fluid pump rate. This study introduces an innovative approach by presenting the design and fabrication of a novel electrostatic-hydraulic coupled soft actuator for a micropump within a microfluidic system. This pioneering soft actuator, leveraging electrostatic-hydraulic coupling, showcases a unique solution to enhance the performance of micropumps. The versatility of such a soft actuator makes it particularly promising for biomedical applications. The actuator comprises dielectric fluid in an elastomeric shell and electrodes to form the out-of-plane fluid-amplified displacement. This displacement amplification was used to generate a pumping actuation in the micropump. The actuator was characterized in terms of dielectric fluid volume, electrode size, temporal response, and amplification displacement. The soft actuator showed a maximum amplified displacement of 0.51 mm at 10 kV of the applied voltage, but a higher voltage caused a dielectric breakdown. Moreover, the actuator demonstrated the ability to operate at frequencies of 0.25 Hz and 0.1 Hz. The results of the study indicate that the fabricated electrostatic-hydraulic coupled soft actuator is a dependable and effective method of actuation for a micropump in a microfluidic system. The experimental characterization of the micropump revealed a maximum flow rate of 2304 μl min−1.
Funder
Ministry of Higher Education of Malaysia
Universiti Teknologi Malaysia
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献