Detection of Paroxysmal Atrial Fibrillation from Dynamic ECG Recordings Based on a Deep Learning Model

Author:

Hu Yating1,Feng Tengfei2ORCID,Wang Miao1ORCID,Liu Chengyu3,Tang Hong1ORCID

Affiliation:

1. School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China

2. Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, 52074 Aachen, Germany

3. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

Background and Objectives: Atrial fibrillation (AF) is one of the most common arrhythmias clinically. Aging tends to increase the risk of AF, which also increases the burden of other comorbidities, including coronary artery disease (CAD), and even heart failure (HF). The precise detection of AF is a challenge due to its intermittence and unpredictability. A method for the accurate detection of AF is still needed. Methods: A deep learning model was used to detect atrial fibrillation. Here, a distinction was not made between AF and atrial flutter (AFL), both of which manifest as a similar pattern on an electrocardiogram (ECG). This method not only discriminated AF from normal rhythm of the heart, but also detected its onset and offset. The proposed model involved residual blocks and a Transformer encoder. Results and Conclusions: The data used for training were obtained from the CPSC2021 Challenge, and were collected using dynamic ECG devices. Tests on four public datasets validated the availability of the proposed method. The best performance for AF rhythm testing attained an accuracy of 98.67%, a sensitivity of 87.69%, and a specificity of 98.56%. In onset and offset detection, it obtained a sensitivity of 95.90% and 87.70%, respectively. The algorithm with a low FPR of 0.46% was able to reduce troubling false alarms. The model had a great capability to discriminate AF from normal rhythm and to detect its onset and offset. Noise stress tests were conducted after mixing three types of noise. We visualized the model’s features using a heatmap and illustrated its interpretability. The model focused directly on the crucial ECG waveform where showed obvious characteristics of AF.

Funder

National Natural Science Foundation of China

Dalian Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3