xECGArch: a trustworthy deep learning architecture for interpretable ECG analysis considering short-term and long-term features

Author:

Goettling Marc,Hammer Alexander,Malberg Hagen,Schmidt Martin

Abstract

AbstractDeep learning-based methods have demonstrated high classification performance in the detection of cardiovascular diseases from electrocardiograms (ECGs). However, their blackbox character and the associated lack of interpretability limit their clinical applicability. To overcome existing limitations, we present a novel deep learning architecture for interpretable ECG analysis (xECGArch). For the first time, short- and long-term features are analyzed by two independent convolutional neural networks (CNNs) and combined into an ensemble, which is extended by methods of explainable artificial intelligence (xAI) to whiten the blackbox. To demonstrate the trustworthiness of xECGArch, perturbation analysis was used to compare 13 different xAI methods. We parameterized xECGArch for atrial fibrillation (AF) detection using four public ECG databases ($$n = 9854$$ n = 9854 ECGs) and achieved an F1 score of 95.43% in AF versus non-AF classification on an unseen ECG test dataset. A systematic comparison of xAI methods showed that deep Taylor decomposition provided the most trustworthy explanations ($$+24\%$$ + 24 % compared to the second-best approach). xECGArch can account for short- and long-term features corresponding to clinical features of morphology and rhythm, respectively. Further research will focus on the relationship between xECGArch features and clinical features, which may help in medical applications for diagnosis and therapy.

Funder

European Union's Horizon 2020 research and innovation programme

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3