Fusion of automatically learned rhythm and morphology features matches diagnostic criteria and enhances AI explainability

Author:

Hammer Alexander1,Goettling Marc1,Malberg Hagen1,Linke Axel2,Richter Sergio2,Mangner Norman2,Schmidt Martin1

Affiliation:

1. Institute of Biomedical Engineering, TU Dresden

2. Department for Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden

Abstract

Abstract

Deep learning (DL) has demonstrated high accuracy in ECG analysis but lacks in explainability. Although explanations can be estimated using explainable artificial intelligence, their causality has not yet been sufficiently investigated. We present a generalizable method for extensively validating the DL explanations’ causality by relating them to clinically relevant ECG characteristics. We applied xECGArch, combining a long-term and a short-term model, for atrial fibrillation (AF) detection in 1,521 single-lead ECGs, achieving an accuracy of 96.3%. The explanations match the diagnostic criteria of AF regarding rhythm and morphology. While the short-term model emphasizes morphology features such as P and fibrillatory waves, the long-term model focuses on QRS complexes. Moreover, the long-term model explanations strongly correlate with rhythm (\(p<0.001\)). For improved clinical interpretability, we introduce a fused representation (xFuseMap), highlighting relevant explanations for rhythm and morphology. We thus demonstrate an explainable and interpretable DL application with potential for providing diagnostic support.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3