SEResUTer: a deep learning approach for accurate ECG signal delineation and atrial fibrillation detection

Author:

Li Xinyue,Cai WenjieORCID,Xu Bolin,Jiang Yupeng,Qi Mengdi,Wang Mingjie

Abstract

Abstract Objective. Accurate detection of electrocardiogram (ECG) waveforms is crucial for computer-aided diagnosis of cardiac abnormalities. This study introduces SEResUTer, an enhanced deep learning model designed for ECG delineation and atrial fibrillation (AF) detection. Approach. Built upon a U-Net architecture, SEResUTer incorporates ResNet modules and Transformer encoders to replace convolution blocks, resulting in improved optimization and encoding capabilities. A novel masking strategy is proposed to handle incomplete expert annotations. The model is trained on the QT database (QTDB) and evaluated on the Lobachevsky University Electrocardiography Database (LUDB) to assess its generalization performance. Additionally, the model’s scope is extended to AF detection using the the China Physiological Signal Challenge 2021 (CPSC2021) and the China Physiological Signal Challenge 2018 (CPSC2018) datasets. Main results. The proposed model surpasses existing traditional and deep learning approaches in ECG waveform delineation on the QTDB. It achieves remarkable average F1 scores of 99.14%, 98.48%, and 98.46% for P wave, QRS wave, and T wave delineation, respectively. Moreover, the model demonstrates exceptional generalization ability on the LUDB, achieving average SE, positive prediction rate, and F1 scores of 99.05%, 94.59%, and 94.62%, respectively. By analyzing RR interval differences and the existence of P waves, our method achieves AF identification with 99.20% accuracy on the CPSC2021 test set and demonstrates strong generalization on CPSC2018 dataset. Significance. The proposed approach enables highly accurate ECG waveform delineation and AF detection, facilitating automated analysis of large-scale ECG recordings and improving the diagnosis of cardiac abnormalities.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3