Generalising electrocardiogram detection and delineation: training convolutional neural networks with synthetic data augmentation

Author:

Jimenez-Perez Guillermo,Acosta Juan,Alcaine Alejandro,Camara Oscar

Abstract

IntroductionExtracting beat-by-beat information from electrocardiograms (ECGs) is crucial for various downstream diagnostic tasks that rely on ECG-based measurements. However, these measurements can be expensive and time-consuming to produce, especially for long-term recordings. Traditional ECG detection and delineation methods, relying on classical signal processing algorithms such as those based on wavelet transforms, produce high-quality delineations but struggle to generalise to diverse ECG patterns. Machine learning (ML) techniques based on deep learning algorithms have emerged as promising alternatives, capable of achieving similar performance without handcrafted features or thresholds. However, supervised ML techniques require large annotated datasets for training, and existing datasets for ECG detection/delineation are limited in size and the range of pathological conditions they represent.MethodsThis article addresses this challenge by introducing two key innovations. First, we develop a synthetic data generation scheme that probabilistically constructs unseen ECG traces from “pools” of fundamental segments extracted from existing databases. A set of rules guides the arrangement of these segments into coherent synthetic traces, while expert domain knowledge ensures the realism of the generated traces, increasing the input variability for training the model. Second, we propose two novel segmentation-based loss functions that encourage the accurate prediction of the number of independent ECG structures and promote tighter segmentation boundaries by focusing on a reduced number of samples.ResultsThe proposed approach achieves remarkable performance, with a F1-score of 99.38% and delineation errors of 2.19±17.73 ms and 4.45±18.32 ms for ECG segment onsets and offsets across the P, QRS, and T waves. These results, aggregated from three diverse freely available databases (QT, LU, and Zhejiang), surpass current state-of-the-art detection and delineation approaches.DiscussionNotably, the model demonstrated exceptional performance despite variations in lead configurations, sampling frequencies, and represented pathophysiology mechanisms, underscoring its robust generalisation capabilities. Real-world examples, featuring clinical data with various pathologies, illustrate the potential of our approach to streamline ECG analysis across different medical settings, fostered by releasing the codes as open source.

Publisher

Frontiers Media SA

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3