Improved YOLOv5-Based Lightweight Object Detection Algorithm for People with Visual Impairment to Detect Buses

Author:

Arifando Rio1ORCID,Eto Shinji1ORCID,Wada Chikamune1ORCID

Affiliation:

1. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan

Abstract

Object detection is crucial for individuals with visual impairment, especially when waiting for a bus. In this study, we propose a lightweight and highly accurate bus detection model based on an improved version of the YOLOv5 model. We propose integrating the GhostConv and C3Ghost Modules into the YOLOv5 network to reduce the number of parameters and floating-point operations per second (FLOPs), ensuring detection accuracy while reducing the model parameters. Following that, we added the SimSPPF module to replace the SPPF in the YOLOv5 backbone for increased computational efficiency and accurate object detection capabilities. Finally, we developed a Slim scale detection model by modifying the original YOLOv5 structure in order to make the model more efficient and faster, which is critical for real-time object detection applications. According to the experimental results, the Improved-YOLOv5 outperforms the original YOLOv5 in terms of the precision, recall, and mAP@0.5. Further analysis of the model complexity reveals that the Improved-YOLOv5 is more efficient due to fewer FLOPS, with fewer parameters, less memory usage, and faster inference time capabilities. The proposed model is smaller and more feasible to implement in resource-constrained mobile devices and a promising option for bus detection systems.

Funder

Ministry of Education, Culture, Sports, Science and Technology of Japan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3