YOUNG APPLE FRUITS DETECTION METHOD BASED ON IMPROVED YOLOV5

Author:

DU Yonghui1,GAO Ang1,SONG Yuepeng2,GUO Jing2,MA Wei3,REN Longlong2

Affiliation:

1. Shandong Agricultural University, College of Mechanical and Electrical Engineering/ China

2. Shandong Agricultural University, College of Mechanical and Electrical Engineering/ China; Shandong Provincial Key Laboratory of Horticultural Machinery and Equipment/ China; Shandong Provincial Engineering Laboratory of Agricultural Equipment Intelligence/ China;

3. Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences/ China

Abstract

The intelligent detection of young apple fruits based on deep learning faced various challenges such as varying scale sizes and colors similar to the background, which increased the risk of misdetection or missed detection. To effectively address these issues, a method for young apple fruit detection based on improved YOLOv5 was proposed in this paper. Firstly, a young apple fruits dataset was established. Subsequently, a prediction layer was added to the detection head of the model, and four layers of CA attention mechanism were integrated into the detection neck (Neck). Additionally, the GIOU function was introduced as the model's loss function to enhance its overall detection performance. The accuracy on the validation dataset reached 94.6%, with an average precision of 82.2%. Compared with YOLOv3, YOLOv4, and the original YOLOv5 detection methods, the accuracy increased by 0.4%, 1.3%, and 4.6% respectively, while the average precision increased by 0.9%, 1.6%, and 1.2% respectively. The experiments demonstrated that the algorithm effectively recognized young apple fruits in complex scenes while meeting real-time detection requirements, providing support for intelligent apple orchard management.

Publisher

INMA Bucharest-Romania

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3