Landslide Susceptibility Prediction Considering Neighborhood Characteristics of Landslide Spatial Datasets and Hydrological Slope Units Using Remote Sensing and GIS Technologies

Author:

Huang Faming,Tao Siyu,Li Deying,Lian Zhipeng,Catani FilippoORCID,Huang JinsongORCID,Li Kailong,Zhang Chuhong

Abstract

Landslides are affected not only by their own environmental factors, but also by the neighborhood environmental factors and the landslide clustering effect, which are represented as the neighborhood characteristics of modelling spatial datasets in landslide susceptibility prediction (LSP). This study aims to innovatively explore the neighborhood characteristics of landslide spatial datasets for reducing the LSP uncertainty. Neighborhood environmental factors were acquired and managed by remote sensing (RS) and the geographic information system (GIS), then used to represent the influence of landslide neighborhood environmental factors. The landslide aggregation index (LAI) was proposed to represent the landslide clustering effect in GIS. Taking Chongyi County, China, as example, and using the hydrological slope unit as the mapping unit, 12 environmental factors including elevation, slope, aspect, profile curvature, plan curvature, topographic relief, lithology, gully density, annual average rainfall, NDVI, NDBI, and road density were selected. Next, the support vector machine (SVM) and random forest (RF) were selected to perform LSP considering the neighborhood characteristics of landslide spatial datasets based on hydrologic slope units. Meanwhile, a grid-based model was also established for comparison. Finally, the LSP uncertainties were analyzed from the prediction accuracy and the distribution patterns of landslide susceptibility indexes (LSIs). Results showed that the improved frequency ratio method using LAI and neighborhood environmental factors can effectively ensure the LSP accuracy, and it was significantly higher than the LSP results without considering the neighborhood conditions. Furthermore, the Wilcoxon rank test in nonparametric test indicates that the neighborhood characteristics of spatial datasets had a great positive influence on the LSP performance.

Funder

National Natural Science Foundation of China

Graduate innovation foundation of Nanchang University, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3