Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran

Author:

Arabameri AlirezaORCID,Saha SunilORCID,Roy Jagabandhu,Chen WeiORCID,Blaschke ThomasORCID,Tien Bui DieuORCID

Abstract

This analysis aims to generate landslide susceptibility maps (LSMs) using various machine learning methods, namely random forest (RF), alternative decision tree (ADTree) and Fisher’s Linear Discriminant Function (FLDA). The results of the FLDA, RF and ADTree models were compared with regard to their applicability for creating an LSM of the Gallicash river watershed in the northern part of Iran close to the Caspian Sea. A landslide inventory map was created using GPS points obtained in a field analysis, high-resolution satellite images, topographic maps and historical records. A total of 249 landslide sites have been identified to date and were used in this study to model and validate the LSMs of the study region. Of the 249 landslide locations, 70% were used as training data and 30% for the validation of the resulting LSMs. Sixteen factors related to topographical, hydrological, soil type, geological and environmental conditions were used and a multi-collinearity test of the landslide conditioning factors (LCFs) was performed. Using the natural break method (NBM) in a geographic information system (GIS), the LSMs generated by the RF, FLDA, and ADTree models were categorized into five classes, namely very low, low, medium, high and very high landslide susceptibility (LS) zones. The very high susceptibility zones cover 15.37% (ADTree), 16.10% (FLDA) and 11.36% (RF) of the total catchment area. The results of the different models (FLDA, RF, and ADTree) were explained and compared using the area under receiver operating characteristics (AUROC) curve, seed cell area index (SCAI), efficiency and true skill statistic (TSS). The accuracy of models was calculated considering both the training and validation data. The results revealed that the AUROC success rates are 0.89 (ADTree), 0.92 (FLDA) and 0.97 (RF) and predication rates are 0.82 (ADTree), 0.79 (FLDA) and 0.98 (RF), which justifies the approach and indicates a reasonably good landslide prediction. The results of the SCAI, efficiency and TSS methods showed that all models have an excellent modeling capability. In a comparison of the models, the RF model outperforms the boosted regression tree (BRT) and ADTree models. The results of the landslide susceptibility modeling could be useful for land-use planning and decision-makers, for managing and controlling the current and future landslides, as well as for the protection of society and the ecosystem.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3