Slip Ratio Adaptive Control Based on Wheel Angular Velocity for Distributed Drive Electric Vehicles

Author:

Kang Sheng1ORCID,Chen Junjie1,Qiu Guangqi1,Tong Hangkai1

Affiliation:

1. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

Abstract

In order to solve the adaptability problem of acceleration slip regulation for distributed drive electric vehicles, a slip ratio adaptive control strategy based on wheel angular velocity is proposed. The principle of road estimation algorithm based on the Burckhardt tire model is analyzed, and an improved estimation principle for optimal slip ratio is designed to improve the speed and accuracy of optimal slip ratio estimation. A slip ratio control strategy based on a conditional integral sliding mode control is designed, and its stability is proven. To make the slip ratio control strategy have better practicability, the slip ratio control strategy is combined with the road estimation algorithm, and the control variable of the slip ratio adaptive control strategy based on a conditional integral sliding mode control is redesigned to obtain a faster vehicle dynamic response. Finally, the effectiveness of the designed road estimation algorithm and the slip ratio adaptive control strategy is verified by simulation of acceleration on joint road and split road. Results show that the designed road estimator can obtain the road adhesion coefficient and optimal slip ratio quickly and accurately; the slip ratio adaptive controller, based on a conditional integral sliding mode control, can maintain the wheel slip ratio near the optimal slip ratio and reduce the steady-state error of the wheel slip ratio.

Funder

Science and Technology Project of Jiangxi Provincial Department of Education

Jiangxi Provincial Natural Science Foundation

Jiangxi Province College Students Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3