Vehicle Dynamics in Electric Cars Development Using MSC Adams and Artificial Neural Network

Author:

Cachumba-Suquillo Santiago J.1ORCID,Alfaro-Ponce Mariel2ORCID,Torres-Cedillo Sergio G.3,Cortés-Pérez Jacinto3,Jimenez-Martinez Moises4ORCID

Affiliation:

1. Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico

2. Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Calle del Puente 222 Col. Ejidos de Huipulco Tlalpan, Ciudad de Mexico 14380, Mexico

3. Centro Tecnológico FES Aragón, Universidad Nacional Autónoma de México, Mexico City 57171, Mexico

4. Tecnologico de Monterrey, School of Engineering and Sciences, Via Atlixcayotl 5718, Puebla 72453, Mexico

Abstract

Recently, there has been renewed interest in lightweight structures; however, a small structure change can strongly affect vehicle dynamic behavior. Therefore, this study provides new insights into non-parametric modeling based on artificial neural networks (ANNs). This work is then motivated by the requirement for a reliable substitute for virtual instrumentation in electric car development to enable the prediction of the current value of the vehicle slip from a given time history of the vehicle (input) and previous values of synthetic data (feedback). The training data are generated from a multi-body simulation using MSC Adams Car; the simulation involves a double lane-change maneuver. This test is commonly used to evaluate vehicle stability. Based on dynamic considerations, this study implements the nonlinear autoregressive exogenous (NARX) identification scheme used in time-series modeling. This work presents an ANN that is able to predict the side slip angle from simulated training data generated employing MSC Adams Car. This work is a specific solution to overtake maneuvers, avoiding the loss of vehicle control and increasing driving safety.

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3