Raman Spectroscopy Imaging of Exceptional Electronic Properties in Epitaxial Graphene Grown on SiC

Author:

Ben Gouider Trabelsi A.,V. Kusmartsev F.,Kusmartseva A.ORCID,H. Alkallas F.,AlFaify S.ORCID,Shkir MohdORCID

Abstract

Graphene distinctive electronic and optical properties have sparked intense interest throughout the scientific community bringing innovation and progress to many sectors of academia and industry. Graphene manufacturing has rapidly evolved since its discovery in 2004. The diverse growth methods of graphene have many comparative advantages in terms of size, shape, quality and cost. Specifically, epitaxial graphene is thermally grown on a silicon carbide (SiC) substrate. This type of graphene is unique due to its coexistence with the SiC underneath which makes the process of transferring graphene layers for devices manufacturing simple and robust. Raman analysis is a sensitive technique extensively used to explore nanocarbon material properties. Indeed, this method has been widely used in graphene studies in fundamental research and application fields. We review the principal Raman scattering processes in SiC substrate and demonstrate epitaxial graphene growth. We have identified the Raman bands signature of graphene for different layers number. The method could be readily adopted to characterize structural and exceptional electrical properties for various epitaxial graphene systems. Particularly, the variation of the charge carrier concentration in epitaxial graphene of different shapes and layers number have been precisely imaged. By comparing the intensity ratio of 2D line and G line—“I2D/IG”—the density of charge across the graphene layers could be monitored. The obtained results were compared to previous electrical measurements. The substrate longitudinal optical phonon coupling “LOOPC” modes have also been examined for several epitaxial graphene layers. The LOOPC of the SiC substrate shows a precise map of the density of charge in epitaxial graphene systems for different graphene layers number. Correlations between the density of charge and particular graphene layer shape such as bubbles have been determined. All experimental probes show a high degree of consistency and efficiency. Our combined studies have revealed novel capacitor effect in diverse epitaxial graphene system. The SiC substrate self-compensates the graphene layer charge without any external doping. We have observed a new density of charge at the graphene—substrate interface. The located capacitor effects at epitaxial graphene-substrate interfaces give rise to an unexpected mini gap in graphene band structure.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3