Ultralow 1/f noise in epigraphene devices

Author:

Shetty N.1ORCID,Chianese F.1ORCID,He H.12ORCID,Huhtasaari J.1ORCID,Ghasemi S.3ORCID,Moth-Poulsen K.3456ORCID,Kubatkin S.1ORCID,Bauch T.1ORCID,Lara-Avila S.17ORCID

Affiliation:

1. Department of Microtechnology and Nanoscience, Chalmers University of Technology 1 , 412 96 Gothenburg, Sweden

2. RISE Research Institutes of Sweden 2 , Box 857, S-50115 Borås, Sweden

3. Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE 3 , Eduard Maristany 10-14, 08019 Barcelona, Spain

4. Catalan Institution for Research & Advanced Studies, ICREA 4 , Pg. Lluis Companys 23, Barcelona, Spain

5. Institute of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra 5 , Barcelona 08193, Spain

6. Department of Chemistry and Chemical Engineering, Chalmers University of Technology 6 , Kemivägen 4, Gothenburg 412 96, Sweden

7. National Physical Laboratory 7 , Hampton Road, Teddington TW11 0LW, United Kingdom

Abstract

We report the lowest recorded levels of 1/f noise for graphene-based devices, at the level of SV/V2=SI/I2=4.4×10−16 (1/Hz), measured at f = 10 Hz (SV/V2=SI/I2 < 10−16 1/Hz for f > 100 Hz) in large-area epitaxial graphene on silicon carbide (epigraphene) Hall sensors. This performance is made possible through the combination of high material quality, low contact resistance achieved by edge contact fabrication process, homogeneous doping, and stable passivation of the graphene layer. Our study explores the nature of 1/f noise as a function of carrier density and device geometry and includes data from Hall sensors with device area range spanning over six orders of magnitude, with characteristic device length ranging from L = 1 μm to 1 mm. In optimized graphene Hall sensors, we demonstrate arrays to be a viable route to improve further the magnetic field detection: a simple parallel connection of two devices displays record-high magnetic field sensitivity at room temperature, with minimum detectable magnetic field levels down to Bmin = 9.5 nT/√Hz. The remarkable low levels of 1/f noise observed in epigraphene devices hold immense capacity for the design and fabrication of scalable epigraphene-based sensors with exceptional performance.

Funder

Stiftelsen för Strategisk Forskning

VINNOVA

H2020 Marie Skłodowska-Curie Actions

Knut och Alice Wallenbergs Stiftelse

Nanoscience and Nanotechnology Area of Advance, Chalmers Tekniska Högskola

Vetenskapsrådet

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3