Theoretical and Experimental Analysis of Hydroxyl and Epoxy Group Effects on Graphene Oxide Properties

Author:

Jaramillo-Fierro Ximena1ORCID,Cuenca Guisella2

Affiliation:

1. Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador

2. Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador

Abstract

In this study, we analyzed the impact of hydroxyl and epoxy groups on the properties of graphene oxide (GO) for the adsorption of methylene blue (MB) dye from water, addressing the urgent need for effective water purification methods due to industrial pollution. Employing a dual approach, we integrated experimental techniques with theoretical modeling via density functional theory (DFT) to examine the atomic structure of GO and its adsorption capabilities. The methodology encompasses a series of experiments to evaluate the performance of GO in MB dye adsorption under different conditions, including differences in pH, dye concentration, reaction temperature, and contact time, providing a comprehensive view of its effectiveness. Theoretical DFT calculations provide insights into how hydroxyl and epoxy modifications alter the electronic properties of GO, improving adsorption efficiency. The results demonstrate a significant improvement in the dye adsorption capacity of GO, attributed to the interaction between the functional groups and MB molecules. This study not only confirms the potential of GO as a superior adsorbent for water treatment, but also contributes to the optimization of GO-based materials for environmental remediation, highlighting the synergy between experimental observations and theoretical predictions in advances in materials science to improve sustainability.

Funder

Universidad Técnica Particular de Loja

Publisher

MDPI AG

Reference121 articles.

1. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles;Xiao;Chem. Phys. Lett.,2007

2. Carmen, Z., and Daniel, S. (2012). Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update, IntechOpen.

3. Removal of textile dyes by carbon nanotubes: A comparison between adsorption and UV assisted photocatalysis;Dutta;Phys. E Low-Dimensional Syst. Nanostruct.,2018

4. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives;Samsami;Process Saf. Environ. Prot.,2020

5. Unravelling the distinct surface interactions of modified graphene nanostructures with methylene blue dye through experimental and computational approaches;Manappadan;J. Hazard. Mater.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3